Λ

On r g-continuous functions in topological spaces

Nitin Bhardwaj¹, B.P Garg², and Pallvi Sharma³

3 Lovely Professional University, Punjab, Punjab Technical University, Punjab, Lovely Professional University, Punjab.

Abstract. In this paper, we study r g-irresolute and r g-continuous functions through the idea of r g-closed sets along with the ideas related to the classes of r g-compact spaces and r g-connected spaces.

Keywords: r g-closed set, continuous map, connectedness and com-pactness

Mathematics Subject Classi cation [2000] :54A05, 54C05, 54D05, 54D30

1 Introduction

Levine in 1970 developed the concept of g-closed sets , de ned as a set X (X;) is gclosed if cl(X) is contained into each open superset of X [10]. The thought has been used widely as of late by numerous topologist since g-closed sets remain not just characteristic speculation of closed sets. They likewise proposed a few fundamental characteristics of topological spaces. The investigation of g-closed sets would give the conceivable usage in PC illustrations [[7]- [9]] and their properties had been observed to be valuable in software engineering and digital topology (see [[6]-[9]], for instance). Due to speculations of pre closed sets, gp- closed were presented and examined in [14]. The same creators [11] utilized gp-closed sets to get a few portrayals of prenormal spaces in [12]. This thought was further contemplated in the work of [3],[1], [11] and [13]. Further [15] characterized and concentrated upon the idea of gpr-closed sets using gp-closed sets and presented the ideas of preregular T $_1$ - space and rgpcontinuity. Authors

[5] have proceeded with the investigation of characteristics of gpr-closed sets and gprcontinuous functions. As of late, [4] characterized the idea of gp-closed sets and utilized this thought to get hypothesis for quasi normal spaces. All the more

as of late, Bhardwaj et. al. [2] had presented and examined the idea of r g-closed sets as well as ^g -closed sets. In this paper, we will proceed with the investigation of r ^g-closed sets, along with presenting and describing r ^g-continuous and r ^g-irresolute functions. We also presented the ideas of r g-compactness and r g-connectedness, and investigated their conduct under r g-continuous functions.

^

2 De nition of Regular - Generalized Weakly Closed Function and its Properties

In this section, we consider the functions by involving r ^g-closed sets and present

a new class of regular ^-generalized weakly (brie y r ^g-continuous) continuous

mapping, concept of quasi r g-open functions and discuss their characterization and basic properties.

De nition 1. A function : (A;) ! (B;) known as regular -generalized closed (in brief r g- closed) map if closed set F of space (A;), (F) is regular -generalized closed set in space (B;).

Theorem 1. Each r-closed map is a r-generalized closed map.

Proof. Consider : (A;) ! (B;) is r-closed map i.e. (X) is r-closed set for

each closed set X of A. Since each r-closed set is r ^g-closed set so (X) also

satis es the de nition of r g- closed set. Thus we have (X) is r g-closed set for

each closed set X of A. Hence is r g-closed. The opposite of this hypothesis does not remain constant as appeared by taking after case.

Example 1. Let us consider A = fl; m; n; og and topologies = fA; ; fl; mg; fn; ogg, f f g f g f g f g f gg = A; ; l; m; l; m; l; m; n . Here we have collections of r g-closed sets

in (A;) and (A;) are fA; ; fI; mg; fn; ogg and f; A; fng; fog; fn; og; fI; n; og; fm; n; ogg and collection of (A;) r-closed sets is fA; ; fI; mg; fn; ogg. De ne : (A;) ! (B;) by (I) = n, (m) = n, (n) = I, (o) = m. Now (fI; mg) = n where fng is r ^g-closed set but fng is not r-closed. Thus is r ^g-closed map but not r-closed map.

Theorem 2. If : A ! B is a closed map and : B ! C , a r ^g-closed map then : A C is r g-closed

Proof. Consider : A B be closed and: B C be r g-closed. To show

: A ! C is r ^g-closed. Suppose a closed set H from space A. Then by de nition of closed map (H) is closed and (H) = ((H)) is r ^g-closed as

is r ^g-closed. Thus, is r ^g-closed.

 $\begin{array}{cccc} & & & & & \\ 3 & r \ g\text{-continuous and } r \ g\text{-irresolute functions} & & & \\ & & & \\ De \ nition \ 2. \ A \ function & & :(A;)! & (B; \) \ known \ as \ r \ g\text{-continuous if} \\ & & 1 & & \\ & & & \\ (V \) \ is \ r \ g\text{-closed in space } (A; \) \ for \ each \ closed \ set \ in \ space \ (B; \). \end{array}$ Example 2. Let A = fl; mg, = fA; ; flg; fmgg also B = fl; m; ng, =

f ; A; fl; mgg de ne	: (A;) ! (B;) with ^	(I) = I and \wedge	(m) = n. Since
every subset of (A;)	is r g-closed thus is r	g-continuous.	1
De nition 3. A functio	n :(A;)!(B;)known ^	as r g-irresolute if	(V)

is r g-closed within space (A;) 8 r g-closed set V in (B;).

3

On r g-continuous functions in topological spaces

Example 3. Let A = fl; m; ng, = f ; A; fl; mgg and = f ; A; fl; mg; fngg de ne : (A;) ! (A;) by (I) = n, (m) = m and (n) = I. At that point inverse image of each r g-closed set is r g-closed under . Therefore, be r girresolute. Theorem 3. Every r g-irresolute function be r g-continuous. ٨ 1 Proof. Let : (A;) ! (B;) be rgw-irresolute function, i.e. (V) be r gclosed in (A;) for each r g-closed set V in (B;). Now since, each closed set 1 be r g-closed set. Thus (V) be r g-closed in (A;) for each closed set V in (B;). Theorem 4. If : (A;) ! (B;) and : (B;)! (C;) are two functions then (i) o be r g-continuous, if is continuous and be r g-continuous. (ii) o be r g-irresolute, if be r g-irresolute and be r g-irresolute. Λ (iii) o be r g-continuous, if be r g-continuous and be r g-irresolute. Proof. (i) Consider and be r g-continuous and continuous respectively. Let V be closed in (Z;), then by de nition of continuity ¹(V) is closed in (B;) ٨ and r g-continuity of implies ((T)) is r g-closed in (A;). That is 1 (V) is r g-closed in (A;) where V is closed in (C;). Hence, o is r g-0 continuous. (ii) Let and as de ned above be r g-irresolute. Let V be r g-closed in (C;), (V) is r g-closed in (B;). As then by de nition of r g-irresolute function ۸ (V)) is r g-closed in (A;). That is (o) (V) is is r g-irresolutes Λ Λ in (A;) where V is r g-irresolute in (C;). Therefore, r g-irresolute o is r g-irresolute. ۸ Λ (iii) Let and as de ned above be r g-irresolute and r g-continuous respectively. Let V be closed in (C;), then by de nition of r g-continuity (V) is 1 1 r g-closed in (B;). As is r g-irresolute so (V)) is r g-closed in (A;). (

That is (o) (V) is r g-continuous where V is closed in (C;). Therefore, o

4 Quasi r g-open functions

is r g-continuous.

De nition 4. The map : (A;) (B;) known as r g-open map if the image

(X) is r g-open in (B;) for all open set X in (A;).

De nition 5. A function : (A;) (B;) known as Quasi r g-open if the

image of all r g-open set in A be open in B.

Example 4. Let A = fl; m; ng, = f; A; flg; fmg; fl; mgg and = f; A; fn g; fl; mgg de ne : (A;) ! (B;) by (I) = n, (m) = n and (n) = n. We have the col-^f f g f g f g f g f g f g f g f g g lection of r g-open set in (A;) are; A; I; m; n; I; m; I; n; m; n.

Λ Now we see the image of each r g-open subset maps into open set of (B;). Finally, by de nition 5 is Quasi r g -open. Theorem 5. A function : (A;) (B;) known as Quasi r g-open i for Λ all subset U of A, (r g int(U)) int((U)). Λ Proof. Let be the Quasi r g-open function and U be a subset of A. Now, we have int(U) U and r g int(U) be a r g-open set. Thus we get that Λ ۸ (rg int(U)) (U). As (rg int(U)) is open (r g int(U)) int((U)). On the other hand, expect that U be a r g-open set in A then (U) = (r gint(U)) int((U)) but int((U)) (U). Consequently, (U) = int((U)) and hence is Quasi r g-open. 1 Theorem 6. If a function : (A;) (B;) be Quasi r g-open then r g (int(G)) for all subset G of B. int((G)) Λ 1 Proof. Consider G to be any arbitrary subset of B. At that point, r g (G)) int(is a r g-open set in A and B be a Quasi r g-open, then, (r g int((G))) 1 1 int(((G))) int(G). Thus, r g int((G)) (int(G)). Review that a subset S is known as a r g-neighbourhood of a point a of A, if 9 a r g-open set U s.t. a 2 U S. De nition 6. A map : (A;) ! (B;) is known as a r g-closed map if the image (A) is r g-closed in (B;) for each closed set A in (A;). De nition 7. A function : A ! B is known as Quasi r g-closed if the image of each r g-closed set in A is closed in B. i.e. each Quasi r g-closed function is closed as well as r g-closed. De nition 8. A function : (A;) (B;) is known as r [^]g -closed if r^gclosed set F of A, (F) be r g-closed in B. Example 5. Let A = B = fl; m; ng, = f; A; fl; mgg and = f; B; fng; fl; mgg. De ne afunction : (A;) ! (B;) by (I) = m, (m) = n and (n) = I. Here, we have the collections of r g-closed sets in (A;) and (B;) are f; A; flg; fmg; fng; fl; mg; fl; ng; fm; ngg and f; B; flg; fmg; fng; fl; mg; fl; ng; fm; ngg respectively. Now, for each r g-closed set in (A;) function maps into r gclosed set in (B;). Therefore, is r ^g -closed. Theorem 7. If : (A;) ! (B;) and : (B;) ! (C;) are two functions. Then

Λ

(i) o is closed if is r g-closed and is Quasi r g-closed.
(ii) o is r ^g -closed if be Quasi r ^g-closed and is r ^g-closed.
(iii) o is Quasi r ^g-closed if is r ^g -closed and is Quasi r ^g-closed.
Proof. (i) Here be r g-closed and be Quasi r g-closed. To prove o be

^
^
Closed. Let F be arbitrary closed in (A;). If, be r g-closed so (F) be r g-closed in (B;). Also be Quasi r g-closed so ((F)) is closed in (C;). i.e.

On r g-continuous functions in topological 5 spaces o (F) is closed in (C;) where F be closed set in (A;). Thus, o is closed. ^ ^ (ii) Here be Quasi r g-closed and be r g-closed. To prove o be r g closed. Let F be arbitrary r ^g-closed in (A;). If, be Quasi r ^g-closed so (F) is r ^g-closed so ((F)) is r ^g-closed in (C;). i.e. be closed in (B;) also, o (F) is r ^g-closed in (C;) where F be r ^g-closed set in (A;). Thus o is r ^g -closed. (iii) Here be r g -closed and be Quasi r g-closed. To prove is Quasi r ^g-closed. Let F be arbitrary r ^g-closed in (A;). Since is r ^g -closed so (F) is r g-closed in (B;) also is Quasi r g-closed so ((F)) is closed in (C;). i.e. o (F) is closed in (C;) where F be r g-closed set in (A;). Thus, o is Quasi r g-closed. : (A;) ! (B;) and : (B;) ! (C;) are two functions Theorem 8. If such that o : (A;) ! (C;) be Quasi r g-closed. Then (i) If be r g-irresolute surjective, then be Quasi r g-closed. (ii) If be r ^g-continuous injective, then be r ^g -closed. Proof. (i) Here : (A;) ! (B;) and o : (A;) ! (C;) are r g-irresolute surjective and Quasi r g-closed respectively. To show is Quasi r g-closed. Let F be r g-closed in (B;) as is r g-irresolute, so (F) is r g-closed in (A;). As o is Quasi r g-closed and is surjective. Thus, o ((F)) = (F) and closed in (C;), that is, (F) be closed in (C;) where F is r g-closed in (A;). Therefore, is Quasi r g-closed. : (B;) ! (C;) and o : (A;) ! (ii) Here (C;) are r g-continuous injective and Quasi r g-closed respectively. To show is r g -closed. Let F be r g-closed in (A;) as o is Quasi r g-closed, so o (F) be closed in (C;). Again be r g-continuous and injective function. Thus, (o(F)) = (F),which is r g-closed in (B;), that is, (F) is r g-closed in (B;), where F is r ^g-closed in (A;). Thus is r ^g -closed. 5 On Regular generalized (r g)-Compactness in Topological Space In this section we extend the concept of open cover and compactness in the form

of r g-closed sets to introduce r g-open cover and r g-compactness and discuss their properties and characterization.

De nition 9. The collection fG_j : j 2	g of r g-open sets in a topological				
space A is known as r g-open cove	r of a subset S is S G_j : j holds.				
De nition 10. The topological space (A;) is known as r g-compact if r g-open cover of A has a nite sub cover.					
	•				
	Λ				
De nition 11. A subset S of a topolo	ogical space (A;) is known as r g-Compact				
De nition 11. A subset S of a topolo 8 f					
De nition 11. A subset S of a topolo 8 f relative to A if collection					
8 f	ogical space (A;) is known as r g-Compact 2 g ^				

De nition 12. A subset S of a topological space A is known as r g-Compact if S is r g-Compact as a subspace of A. Λ (B;) is a surjective and r g-continuous map. If Theorem 9. Let : (A;) Λ A is r g-compact, then B is compact. Proof. Here, we have : (A;) (B;) a surjective and r g-continuous map and A be r g-compact. To prove B be compact. Let fG_i : j 2 g is an open 1 r g-open cover of space A. As, A is r gcover of B. Then f (G_i) : j 2 g be a 1 1 1 compact, it has a nite sub cover, say f (G_1) ; (G₂); (G₃);:::; (G_n)g. Surjectiveness of implies $fG_1; G_2; G_3; :::; G_ng$ is an open cover of B. Therefore, B be compact. Theorem 10. For a map : (A;) ! (B;) is r g-irresolute and a subset S of A is r g-compact relative to B, then the image (S) is r g-compact relative to B. Proof. Here, we have : (A;) ! (B;) is r g-irresolute also S subset of A is r g-compact relative to A. To prove (S) is r g-compact relative to B. Let fG_j: S f (G_i) : j 2 g where (G_i) is r g-open in A S j 2 g be a collection of r g-open sets in B such that S fG_i: j 2 g. Then 1 1 for each j. Since S is ٨ r g-compact relative₁ to A, there exist a nite subcollection fG_1 ; G_2 ; G_3 ; \ldots ; Gng S r g-compact fG_j : j 2 g. Hence, (S) is such that S f)(Gi):i2 gi.e. (S) ۸ relative to B. Theorem 11. A r g-closed subset of a r g-compact space A is r g-compact relative to A. Proof. Consider M is a r g-closed subset of a r g-compact space A. Therefore, AnM be r g-open in A. Now to prove M is r g-compact relative to A. Let be a Λ r g-open cover for M. Then f; AnMg be a r g-open cover for A. As, A be r gcompact, by de nition 12, X has a nite subcover, say fA_1 ; A_2 ; A_3 ; ::: $A_ng =$ 1. If AnM does not belong, then 1 n(AnM) is a subcover of M. Thus by de nition 12 M is r g-compact relative to A. Λ r g-Closure 6

Λ

De nition 13. For a subset X of (A;), we de ne the r g-closure of X as follows:

r ^g $cl(X) = {}^{T}fF : F isar ^g closedinA; X F g ^$ Theorem 12. Let X be a subset of (A;) and a 2 A. Then a 2 r gcl(X) i

V^T X 6= 8 r g open ^

set V o	containing a.		
X AnV, rg cl(X) AnV and	then a $2 = r g cl(X)$,	Т	
Proof. Let there be a r g-open s	set V containing a so that V	Х	(= . Since
^	^		

a contradiction.

On r g-continuous functions in topological 7 spaces Λ Conversely, let a 2= r g cl(X); then 9 a r g-closed set F containing X s.t a 2= F. Since a 2 A n F and A n F is r g-open, (A n F) X = , which is a contradiction. Т Theorem 13. Let X and Y be subsets of (A;). Then Λ cl() = and r g cl(A) = A(a)r g (b)If X Y, then rg cl(X) rg cl(Y)۸ Λ cl(r g (c)r g cl(X) = rgcl(X)Λ ۸ cl(X s Sr^g (e)r ^g Y) r ^g cl(X) cl(Y) cl(X) (d)r g cl(X cl(Y) Y) r g r g Т A,Fg = . Hence, proved. T Proof. (a) By using the de nition 13 r g F: F is a r g-closed in cl() = r g -closed in A, Y F g. As X Y implies X F where F is a r^T (b) Here X Y and by using de nition 13 we have r g cl(Y) =fF:Fisa g-closed in ٨ A. i.e. r g cl(X) rg cl(Y). Hence, proved. $cl(r^g cl(X)) = r^g$ in A, X F g, So, r [^]g cl(^T fF : F is a r [^]g-closed cl(X) =fF : F is a r g-closed (c) By using the de nition 13, we have r g Т in A, X F g). Hence, proved. Т f S is a r g-closed ^s gg f gg Y) = fF: F is a r g-closed in A, X Fq ffF:F (d) r g cl(X rg cl(X) rg cl(Y). SΤ in A, X F F: F is a r g-closed in A, Y F = ۸ Λ Hence, proved to part (d). (e) Similar S References

- I. Arokiarani, JB. Dontchev Blackadar and K. Balachandran: Some characteriza-tions of gp-irresolute and gp-continuous maps between topological spaces. Mem. Fac. Sci. Kochi Univ. Ser. A Math 20, 93{104 (1999).
- B. P. Garg, H. Kaur and N. Bhardwaj: On Regular -Generalized Closed Sets in Topological Spaces. Global Journal of Pure and Applied Mathematics 11, 875{886 (2015).
- 3. J. Dontchev and M. Ganster: On d-generalized closed sets and T 3 -spaces. Mem.

4

Fac. Sci. Kochi Univ. Ser. A Math 17, 15{31 (1996).

- 4. H. Maki and J. Dontchev: On behaviour of gp-closed sets and their generalizations. Mem. Fac. Sci. Kochi Univ. Ser. A Math 19, 57{72 (1998).
- 5. Y. Gnanambal: On generalized preregular closed sets in topological spaces. Indian Journal of Pure and Applied Mathematics 28, 351{360 (1997).
- DS. Jankovic, IL. Reilly and MK. Vamanamurthy: On strongly compact topological spaces. Questions Answers Gen. Topology 6, no. 1 29{40 (1988).
- 7. ED. Khalimsky: Applications of connected ordered topological spaces in topology. Conference of Mathematics Departments of Povolsia (1970).
- ED. Khalimsky, PR. Meyer and R. Kopperman: Computer graphics and connected topologies on nite ordered sets Topology and its Applications. 36, no. 1 1{17 (1990).
- 9. PR. Meyer, R. Kopperman and TY. Kong: A topological approach to digital topology. American Mathematical Monthly 98, no. 12 901(917 (1991).
- 10. N. Levine: Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo 19, no. 1 89{96 (1970).
- 11. T. Noiri: Almost p-regular spaces and some functions. Acta Mathematica Hungarica, 79, no. 3 207{216 (1998).
- 12. H. Maki, J. Umehara and T. Noiri: Generalized preclosed functions. Mem. Fac. Sci. Kochi Univ. Ser. A Math 19, 13{20 (1998).
- 13. T. M. Nour: Contributions to the theory of bitopological spaces. PhD thesis India Delhi University (1989).
- 14. B. Y. Lee, J. H. Park and Y. B. Park: On gp-closed sets and pre gp-continuous functions. Indian Journal of Pure and Applied Mathematics, 33, no. 1 3{{12 (2002).
- 15. Balachandran K. and Gnanambal Y: On gpr-continuous functions in topological spaces. Indian J Pure Appl Math 30(6), 581{93 1999.